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Abstract— In this paper, a genetic algorithm (GA) and particle swarm optimization with constriction factor (CFPSO) are proposed for solving the 
short term multi chain hydrothermal scheduling problem with non smooth fuel cost objective functions. The performance of the proposed techniques is 
demonstrated on hydrothermal test system comprising of three thermal units and four hydro power plants. A wide range of thermal and hydraulic con-
straints such as power balance constraint, minimum and maximum limits of hydro and thermal units, water discharge rate limits, reservoir volume limits, 
initial and end reservoir storage volume constraint and water dynamic balance constraint are taken into consideration. The simulation results obtained 
from the constriction factor based particle swarm optimization are compared with the outcomes obtained from the genetic algorithm to reveal the validity 
and verify the feasibility of the proposed methods. The test results show that the particle swarm optimization technique is better solution than genetic 
algorithm in terms of solution quality and computational time.  

Index Terms— Hydrothermal Generation Scheduling, Valve Point Loading Effect, Genetic Algorithm (GA), Particle Swarm Optimization (PSO), 
Constriction Factor (CF) 

——————————      —————————— 

1 INTRODUCTION                                                                     
HE hydrothermal generation scheduling plays an im-
portant role in the operation and planning of a power sys-
tem. Since the operating cost of thermal power plant is 

very high compared to the operating cost of hydro power 
plant, the integrated operation of the hydro and thermal 
plants in the same grid has become the more economical [1]. 
The main objective of the short term hydro thermal scheduling 
problem is to determine the optimal generation schedule of 
the thermal and hydro units to minimize the total production 
cost over the scheduling time horizon (typically one day or 
one week) subjected to a variety of thermal and hydraulic con-
straints. The hydrothermal generation scheduling is mainly 
concerned with both hydro unit scheduling and thermal unit 
dispatching. The hydrothermal generation scheduling prob-
lem is more difficult than the scheduling of thermal power 
systems. Since there is no fuel cost associated with the hydro 
power generation, the problem of minimizing the total pro-
duction cost of hydrothermal scheduling problem is achieved 
by minimizing the fuel cost of thermal power plants under the 
constraints of water available for the hydro power generation 
in a given period of time [2]. In short term hydrothermal 
scheduling problem, the reservoir levels at the start and the 
end of the optimization period and the hydraulic inflows are 
assumed known. In addition, the generating unit limits and 
the load demand over the scheduling interval are known. Sev-
eral mathematical optimization techniques have been used to 
solve short term hydrothermal scheduling problems [3]. In the 
past, hydrothermal scheduling problem is solved using classi-
cal mathematical optimization methods such as dynamic pro-
gramming method [4-5], lagrangian relaxation method [6-7], 
mixed integer programming [8], interior point method [9], 
gradient search method and Newton raphson method [2]. In 
these conventional methods simplifying assumptions are 
made in order to make the optimization problem more tracta-

ble. Thus, most of conventional optimization techniques are 
unable to produce optimal or near optimal solution of this 
kind of problems.  The computational time of these methods 
increases with the increase of the dimensionality of the prob-
lem. The most common optimization techniques based upon 
artificial intelligence concepts such as evolutionary program-
ming [10-11], simulated annealing [12-14], differential evolu-
tion [15], artificial neural network [16-18], genetic algorithm 
[19 -22] and particle swarm optimization [23-27] have been 
given attention by many researchers due to their ability to find 
an almost global or near global optimal solution for short term 
hydrothermal scheduling problems with operating con-
straints. Major problem associated with these techniques is 
that appropriate control parameters are required. Sometimes 
these techniques take large computational time due to im-
proper selection of the control parameters. 
 The PSO is a population based optimization technique first 
proposed by Kennedy and Eberhart in 1995. In PSO, each par-
ticle is a candidate solution to the problem. Each particle in 
PSO makes its decision based on its own experience together 
with other particles experiences. Particles approach to the op-
timum solution through its present velocity, previous experi-
ence and the best experience of its neighbors [28]. Compared 
to other evolutionary computation techniques, PSO can solve 
the problems quickly with high quality solution and stable 
convergence characteristic, whereas it is easily implemented. 
The genetic algorithm (GA) is a stochastic global search and 
optimization method that mimics the metaphor of natural bio-
logical evolution such as selection, crossover and mutation. 
GA is started with a set of candidate solutions called popula-
tion (represented by chromosomes). At each generation, pairs 
of chromosomes of the current population are selected to mate 
with each other to produce the children for the next genera-
tion. The chromosomes which are selected to form the new 
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offspring are selected according to their fitness. In general, the 
chromosomes with higher fitness values have higher probabil-
ity to reproduce and survive to the next generation. While the 
chromosomes with lower fitness values tend to be discarded. 
This process is repeated until a termination condition is 
reached (for example maximum number of generations). Most 
of the GA parameters are set after considerable experimenta-
tion and the major drawback of this method is the lack of a 
solid theoretical basis for their setting. 

2 PROBLEM FORMULATION 
The main objective of short term hydro thermal scheduling 
problem is to minimize the total fuel cost of thermal power 
plants over the optimization period while satisfying all ther-
mal and hydraulic constraints. The objective function to be 
minimized can be represented as follows: 

         

T N
T t it git

t=1 i=1

F = n F (P )∑∑                                       (1)       

In general, the fuel cost function of thermal generating unit i at 
time interval t can be expressed as a quadratic function of real 
power generation as follows: 

       2it git i git i git iF (P )=a P +b P +c                               (2)                     
Where gitP  is the real output power of thermal generating unit 
i  at time interval t in (MW), Fit (Pgit) is the operating fuel cost 
of thermal unit i in ($/hr), FT is the total fuel cost of the sys-
tem in ($), T is the total number of time intervals for the 
scheduling horizon, nt is the numbers of hours in scheduling 
time interval t, N is the total number of thermal generating 
units, i ia ,b and  ci  are the fuel cost coefficients of thermal gen-
erating unit i. 

The generating units with multi-valve steam turbines exhibit a 
greater variation in the fuel cost function. The valve opening 
process of multi-valve steam turbines result in ripples in fuel 
cost curve [29]. Due to the valve point effects, the real input-
output characteristic contains higher order non linearity and 
discontinuity which result in non smooth and non convex fuel 
cost functions. The valve point effects are taken into considera-
tion by adding rectified sinusoidal cost function to the original 
fuel cost function described in (2). The fuel cost function of 
thermal power plant with valve point loading effect can be 
expressed as: 

v min2it git i git i git i i i git gitF (P )=a P +b P +c + e ×sin(f ×(P -P ))         (3) 

Where Fitv (Pgit) is the fuel cost function of thermal unit i in-
cluding the valve point loading effect and fi, ei are the fuel 
cost coefficients of generating unit i with valve point loading 
effect. 
The minimization of the objective function of short term hy-
drothermal scheduling problem is subject to a number of 
thermal and hydraulic constraints. These constraints include 
the following: 

                                                                                 
1) Real Power Balance Constraint: 
For power balance, an equality constraint should be satisfied. 
The total active power generation from the hydro and thermal 
plants must equal to the total load demand plus transmission 
line losses at each time interval over the scheduling period. 

            
N M

git hjt Dt Lt

i=1 j=1

P + P =P +P∑ ∑                         (4) 

Where, PDt is the total load demand during the time interval t 
in (MW), Phjt is the power generation of hydro unit j at time 
interval t in (MW), Pgit is the power generation of thermal 
generating unit i at time interval t in (MW) and PLt represents 
the total transmission line losses during the time interval t in 
(MW). For simplicity, the transmission power loss is neglected 
in this paper. 
                                                                                                                                                                               
2) Thermal Generator Limit Constraint: 
The output power generation of thermal power plant must lie 
in between its minimum and maximum limits. The inequality 
constraint for each thermal generator can be expressed as: 
         min maxgi git giP P P≤ ≤                                             (5) 

Where Pgimin and Pgimax are the minimum and maximum pow-
er outputs of thermal generating unit i in (MW), respectively. 
The maximum output power of thermal generator i is limited 
by thermal consideration and minimum power generation is 
limited by the flame instability of a boiler. 

 
3) Hydro Generator Limit Constraint: 
The output power generation hydro power plant must lie in 
between its minimum and maximum bounds. The inequality 
constraint for each hydro generator can be defined as: 
           min maxhj hjt hjP P P≤ ≤                                           (6) 

Where Phjmin is the minimum power generation of hydro gen-
erating unit j in (MW) and Phjmax is the maximum power gen-
eration of hydro generating unit j in (MW). 

 
4) Reservoir Storage Volume Constraint: 
The operating volume of reservoir storage limit must lie in 
between the minimum and maximum capacity limits. 
           min maxhj hjt hjV V V≤ ≤                          (7) 

Where Vhjmin is the minimum storage volume of reservoir j 
and Vhjmax is the maximum storage volumes of reservoir j. 

 
5) Water Discharge Rate Limit Constraint: 
The water Discharge rate of hydro turbine must lie in between 
its minimum and maximum operating limits. 

           min maxqhj hjt hjq q≤ ≤                          (8) 

Where qhjmin and qhjmax are the minimum and maximum water 
discharge rate of reservoir j, respectively 

 
6) Initial and End Reservoir Storage Volume Constraint: 
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This constraint implies that the desired volume of water to be 
discharged by each reservoir over the scheduling period 
should be in limit 
             0 begin maxhjt = hj = hjV V V                                     (9) 

          T endhjt = hjV V                              (10) 

Where Vhjbegin and Vhjend are the initial and final storage vol-
umes of reservoir j, respectively 

 
7) Water Dynamic Balance Constraint: 
The water continuity equation relates the previous interval 
water storage in reservoirs with the current storage including 
delay in water transportation between successive reservoirs. 
The water continuity equation can be represented as:            

uj

uj uj

R
hjt hj,t-1 hjt hjt hjt u,t-τ u,t-τ

u=1

V =V +I -q -s + (q +S )∑                 (11) 

Where Ihjt is water inflow rate of reservoir j at time interval t, 
Shjt is the spillage from reservoir j at time interval t, τuj is the 
water transport delay from reservoir u to reservoir j and Ruj is 
the number of upstream hydro reservoirs directly above the 
reservoir j. 

 
8) Hydro Plant Power Generation Characteristic: 
The hydro power generation is a function of the net hydraulic 
head, water discharge rate and the reservoir volume. This can 
be expressed as follows: 
   hjt hjt hjtP =f(q ,v ) and hjk jkv =f(h )                                   (12) 

The hydro power generation can be expressed in terms of res-
ervoir volume instead of using the reservoir effective head, 
and the frequently used functional is: 

2 2hjt 1j hjt 2j hjt 3j hjt hjt 4j hjt 5j hjt 6jP =c V +c q +c V q +c V +c q +c           (13) 

Where c1j, c2j, c3j, c4j, c5j and c6j are the Power generation coef-
ficients of hydro generating unit j 

3 GENETIC ALGORITHM (GA) 
The GA is a method for solving optimization problems that is 
based on natural selection, the process that drives biological 
evolution. The general scheme of GA is initialized with a pop-
ulation of candidate solutions (called chromosomes). Each 
chromosome is evaluated and given a value which corre-
sponds to a fitness level in problem domain. At each genera-
tion, the GA selects chromosomes from the current population 
based on their fitness level to produce offspring. The chromo-
somes with higher fitness levels have higher probability to 
become parents for the next generation, while the chromo-
somes with lower fitness levels to be discarded. After the se-
lection process, the crossover operator is applied to parent 
chromosomes to produce new offspring chromosomes that 
inherent information from both sides of parents by combining 
partial sets of genes from them. The chromosomes or children 
resulting from the crossover operator will now be subjected to 

the mutation operator in final step to form the new generation. 
Over successive generations, the population evolves toward 
an optimal solution. A schematic outline of simple genetic 
algorithm is illustrated in figure 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
The features of GA are different from other traditional meth-
ods of optimization in the following respects [30]: 

i- GA does not require derivative information or 
other auxiliary knowledge. 

ii- GA work with a coding of parameters instead of 
the parameters themselves. For simplicity, binary 
coded is used in this paper. 

iii- GA search from a population of points in parallel, 
not a single point. 

iv- GA use probabilistic transition rules, not deter-
ministic rules. 

3.1 Genetic Algorithm Operators 
At each generation, GA uses three operators to create the new 
population from the previous population: 

3.1.1 Selection or Reproduction 
Selection operator is usually the first operator applied on the 
population. The chromosomes are selected based on the Dar-
win's evolution theory of survival of the fittest. The chromo-
somes are selected from the population to produce offspring 
based on their fitness values. The chromosomes with higher 
fitness values are more likely to contributing offspring and are 
simply copied on into the next population. The commonly 
used reproduction operator is the proportionate reproduction 
operator. The ith string in the population is selected with a 
probability proportional to iF where, iF is the fitness value for 
that string. The probability of selecting the ith string is: 

                    
i

i n
j

j=1

FP =

F∑
                                             (14)         

Where n is the population size, the commonly used selection 
operator is the roulette-wheel selection method. Since the cir-

 
Fig.1. Schematic outline of simple genetic algorithm 
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cumference of the wheel is marked according to the string fit-
ness, the roulette-wheel mechanism is expected to make 

/i avgF F  copies of the ith string in the mating pool. The aver-
age fitness of the population is:   

            

n
i

i=1avg

F

F =
n

∑
                                          (15)  

3.1.2 Crossover or Recombination 
The basic operator for producing new chromosomes in the GA 
is that of crossover. The crossover produce new chromosomes 
have some parts of both parent chromosomes. The simplest 
form of crossover is that of single point crossover. In single 
point crossover, two chromosomes strings are selected ran-
domly from the mating pool. Next, the crossover site is select-
ed randomly along the string length and the binary digits are 
swapped between the two strings at crossover site. 

3.1.3 Mutation 
The mutation is the last operator in GA. It prevents the prema-
ture stopping of the algorithm in a local solution. The muta-
tion operator enhances the ability of the genetic algorithm to 
find a near optimal solution to a given problem by maintain-
ing a sufficient level of genetic variety in the population. This 
operator randomly flips or alters one or more bits at randomly 
selected locations in a chromosome from 0 to 1 or vice versa. 

3.1.4 Parameters of Genetic Algorithm 
The performance of GA depends on choice of GA parameters 
such as: 
i. Population size (Np): The population size affects the effi-
ciency and performance of the algorithm. Higher population 
size increases its diversity and reduces the chances of prema-
ture converge to a local optimum, but the time for the popula-
tion to converge to the optimal regions in the search space will 
also increase. On the other hand, small population size may 
result in a poor performance from the algorithm. This is due to 
the process not covering the entire problem space. A good 
population size is about 20-30, however sometimes sizes 50-
100 are reported as best. 
ii. Crossover rate: The crossover rate is the parameter that af-
fect the rate at which the process of cross over is applied. This 
rate generally should be high, about 80-95%.  
iii. Mutation rate: It is a secondary search operator which in-
creases the diversity of the population. Low mutation rate 
helps to prevent any bit position from getting trapped at a 
single value, whereas high mutation rate can result in essen-
tially random search. This rate should be very low. 

3.1.5 Termination of Genetic Algorithm 
The generational process is repeated until a termination condi-
tion has been satisfied. The common terminating conditions 
are: fixed number of generations reached, a best solution is not 
changed after a set number of iterations, or a cost that is lower 
than an acceptable minimum. 

4 GA APPLIED TO SHORT TERM HYDRO- 
THERMAL SCHEDULING PROBLEM 

In genetic algorithm, the water discharge through the turbines 
during each optimization interval is used as the main control 
variable. In binary genetic algorithm representation, the water 
discharge rates for each reservoir at each time interval are rep-
resented by a given number of binary strings. In GA binary 
representation, the water discharge rate is used rather than the 
output power generation of hydro units because the encoded 
parameter is more beneficial for dealing with water balance 
constraints. The binary representation of hydro thermal coor-
dination problem is illustrated in figure 2. 

 

 
Fig.2. Binary representation of hydrothermal scheduling problem 

The generated string can be converted in the feasible range by 
using the following equation: 

         
max minhj hjminhj hj iL

q -qq =q +( )×d
2 -1

                               (16) 

Where qhjmin is the minimum value of discharge rate through 
hydro turbine j, qhjmax is the maximum value of discharge rate 
through hydro turbine j, L is the String length (number of bits 
used for encoding water discharge rate of each hydro unit) 
and di is the binary coded value of the string ( decimal value 
of string). 
By knowing the water discharge rate of each hydro power 
plant, the reservoir inflows and the hydro unit characteristic 
equation, the reservoir storage level and the output power of 
hydro power plant can be determined. The total power gener-
ations of all hydro power plants are subtracted from the total 
system load demand for each hour. The remaining load must 
be satisfied by running thermal units for each hour. An eco-
nomic load dispatch problem is achieved and the fuel cost for 
each thermal unit over the scheduling period is calculated. 

5 ALGORITHM FOR SHORT TERM HYDRO- 
THERMAL SCHEDULING USING GA METHOD 

The sequential steps of solving short term hydro thermal 
scheduling problem by using genetic algorithm are explained 
as follows: 
Step 1: Read the system input data, namely fuel cost curve 
coefficients, power generation limits of hydro and thermal 
units, number of thermal units, number of hydro units, power 
demands, power generation coefficients of hydro units, water 
volume limits, discharge rate limits and water inflow rate 
through the hydro turbines. 
Step 2: Select genetic algorithm parameters such as population 
size, length of string, probability of crossover, probability of 
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mutation and maximum number of generations to be per-
formed. 
Step 3: Generate the initial population randomly in the binary 
form. The initial population must be feasible candidate solu-
tions that satisfy the practical operation constraints of all 
thermal and hydro units. 
Step 4: Calculate the discharge rate of each hydro unit from 
the decoded population by using equation (16). 
Step 5: Check the inequality constraint of the water discharge 
rate for each hydro unit from the following equation: 

   

min

min

max max

max

min

    

     if  

  if  
if  

 ≤ ≤
= ≤
 ≥

hjt hj hjt hj

hjt hj hjt hj

hj hjt hj

q q q q

q q q q
q q q

                        (17) 

Step 6: Calculate the water storage volume of each reservoir 
from the water balance continuity equation defined in (11). 
Step 7: Check the inequality constraint of reservoir storage 
volume for each hydro unit by the following equation: 

min

min

max max

max

min

      

    if  

   if  
if  

 ≤ ≤
= ≤
 ≥

hjt hj hjt hj

hjt hj hjt hj

hj hjt hj

V V V V

V V V V
V V V

                         (18) 

Step 8: Calculate the hydro power generation of each hydro 
unit from the hydro power characteristic equation given in 
(13). 
Step 9: Calculate the thermal demand by subtracting the gen-
eration of hydro units from the total load demand. The ther-
mal demand (total load – hydro generation) must be covered 
by the thermal units. The thermal generations are calculated 
from the power balance equation given in (4). 
Step 10: Calculate the output power of each thermal unit by 
solving economic load dispatch problem. 
Step 11: Check the inequality constraint of thermal power 
generation for each thermal unit according to the following 
equation: 

min

min

max max

max

min

    

     if  

  if  
if  

 ≤ ≤
= ≤
 ≥

git gi git gi

git gi git gi

gi git gi

P P P P

P P P P
P P P

                   (19) 

Step 12: Evaluate the fitness value for each string in the popu-
lation by using the objective function stated in equation (1). 
Step 13: The chromosomes with lower cost function are select-
ed to become parents for the next generation. 
Step 14: Perform the crossover operator to parent chromo-
somes to create new offspring chromosomes. 
Step 15: The mutation operator is applied to the new offspring 
resulting from the crossover operation to form the new gener-
ation. 
Step16: Update the population. 
Step 17: If the number of iterations reached the maximum, 
then go to step19. Otherwise go to step 4. 
Step18: The string that generates the minimum total fuel cost 

of the thermal power plants is the optimal solution of the 
problem.  
Step 19: Print the outputs of hydrothermal scheduling and 
stop. 

6 PARTICLE SWARM OPTIMIZATION WITH 
CONSTRICTION FACTOR 

6.1 Overview of Particle Swarm Optimization (PSO) 
Particle swarm optimization (PSO) is a population based sto-
chastic optimization technique, inspired by social behavior of 
bird flocking or fish schooling. It is one of the most modern 
heuristic algorithms, which can be used to solve non linear 
and non continuous optimization problems. PSO shares many 
similarities with evolutionary computation techniques such as 
genetic algorithm (GA). The system is initialized with a popu-
lation of random solutions and searches for optima by updat-
ing generations. However, unlike GA, PSO has no evolution 
operators such as mutation and crossover. The PSO algorithm 
searches in parallel using a group of random particles. Each 
particle in a swarm corresponds to a candidate solution to the 
problem. Particles in a swarm approach to the optimum solu-
tion through its present velocity, its previous experience and 
the experience of its neighbors. In every generation, each par-
ticle in a swarm is updated by two best values. The first one is 
the best solution (best fitness) it has achieved so far. This value 
is called Pbest. Another best value that is tracked by the parti-
cle swarm optimizer is the best value, obtained so far by any 
particle in the population. This best value is a global best and 
called gbest. Each particle moves its position in the search 
space and updates its velocity according to its own flying ex-
perience and neighbor's flying experience. After finding the 
two best values, the particle update its velocity according to 
equation (20). 

k+1 k k k k ki i 1 1 i i 2 2 iV =ω×V +c ×r ×(Pbest - X )+c ×r ×(gbest - X )                (20) 

Where Vik is the velocity of particle i at iteration k, Xik is the 
position of particle i at iteration k, ω is the inertia weight fac-
tor, c1and c2 are the acceleration coefficients, r1and r2 are posi-
tive random numbers between 0 and 1, Pbestik is the best posi-
tion of particle i at iteration k and gbestk is the best position of 
the group at iteration k. 
In the velocity updating process, the acceleration constants c1, 
c2 and the inertia weight factor are predefined and the random 
numbers r1and r2 are uniformly distributed in the range of 
[0,1]. Suitable selection of inertia weight in equation (20) pro-
vides a balance between local and global searches, thus requir-
ing less iteration on average to find a sufficiently optimal solu-
tion. A low value of inertia weight implies a local search, 
while a high value leads to global search. As originally devel-
oped, the inertia weight factor often is decreased linearly from 
about 0.9 to 0.4 during a run. It was proposed in [31].  In gen-
eral, the inertia weight ω is set according to the following 
equation: 

        max min
max

max

ω -ωω=ω -×Iter
Iter

                                    (21) 

Where ωmin and ωmax are the minimum and maximum value 
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of inertia weight factor, Itermax corresponds to the maximum 
iteration number and Iter is the current iteration number. 
The current position (searching point in the solution space) 
can be modified by using the following equation: 
       k+1 k k+1i i iX =X +V                                      (22) 

The velocity of particle i at iteration k must lie in the range: 
         min max≤ ≤ki i iV V V                                              (23) 

The parameter Vmax determines the resolution or fitness, with 
which regions are to be searched between the present position 
and the target position. If maxV is too high, the PSO facilitates a 
global search and particles may fly past good solutions. Con-
versely, if Vmax is too small, the PSO facilitates a local search 
and particles may not explore sufficiently beyond locally good 
solutions. In many experiences with PSO, Vmax was often set at 
10-20% of the dynamic range on each dimension.  
The constants c1 and c2 in equation (20) pull each particle to-
wards Pbest and gbest positions. Thus, adjustment of these 
constants changes the amount of tension in the system. Low 
values allow particles to roam far from target regions, while 
high values result in abrupt movement toward target regions. 
Figure 3 shows the search mechanism of particle swarm opti-
mization technique using the modified velocity, best position 
of particle i and best position of the group. 

 

              
Fig.3. Updating the position mechanism of PSO technique 

6.2 Constriction Factor Approach 
After the original particle swarm proposed by Kennedy and 
Eberhart, a lot of improved particle swarms were introduced. 
The particle swarm with constriction factor is very typical. 
Recent work done by Clerc [32] indicates that the use of a con-
striction factor may be necessary to insure convergence of the 
particle swarm optimization algorithm. In order to insure 
convergence of the particle swarm optimization algorithm, the 
velocity of the constriction factor approach can be represented 
as follows: 

k+1 k k k k k
i i 1 1 i i 2 2 iV =K [ω×V +c ×r ×(Pbest -X )+c ×r ×(gbest -X )]×            (24) 

Where K is the constriction factor and given by: 

        
2

2K=
2- - 4−ϕ ϕ ϕ

                                           (25) 

Where: 1 2=c +cϕ , 4>ϕ  

The convergence characteristic of the particle swarm optimiza-
tion technique can be controlled by .ϕ In the constriction fac-
tor approach,ϕ must be greater than 4.0 to guarantee the sta-
bility of the PSO algorithm. However, asϕ increases the con-
striction factor decreases and diversification is reduced, yield-
ing slower response. Typically, when the constriction factor is 
used, ϕ is set to 4.1 (i.e. c1 =c2 = 2.05) and the constant multi-
plier k is 0.729. The constriction factor approach can generate 
higher quality solutions than the basic PSO technique. 

7 ALGORITHM FOR SHORT TERM HYDRO- 
THERMAL SCHEDULING USING CFPSO METHOD 

The sequential steps of solving short term hydro thermal 
scheduling problem by using genetic algorithm are explained 
as follows: 
Step 1: Read the system input data, namely fuel cost curve 
coefficients, power generation limits of hydro and thermal 
units, number of thermal units, number of hydro units, power 
demands, power generation coefficients of hydro power 
plants, upper and lower limits of reservoir volumes, discharge 
rate limits and water inflow rate through the hydro turbines. 
Step 2: Initialize a population of particles with random posi-
tions according to the minimum and maximum operating lim-
its of each unit (upper and lower bounds of power output of 
thermal generating units and upper and lower bounds of wa-
ter discharge rate of hydro units). These initial particles must 
be feasible candidate solutions that satisfy the practical opera-
tion constraints of all thermal and hydro units.  
Step 3: Initialize the velocity of particles in the range be-
tween max maxi[ V , Vi ]− + . 
Step 4: Calculate the reservoir storage of jth hydro power plant 
in the dependent interval by using the water balance continui-
ty equation defined in (11). 
Step5: Check the inequality constraint of reservoir storage 
volume according to equation (18).                     
Step 6: Calculate the hydro power generation from the equa-
tion given in (13). 
Step 7: Calculate the thermal demand by subtracting the gen-
eration of hydro units from the total load demand. The ther-
mal demand (total load – hydro generation) must be covered 
by the thermal units. The thermal generations are calculated 
from the power balance equation given in (4). 
Step 8: Check the inequality constraint of thermal power gen-
erated using equation (19).     
Step 9: Evaluate the fitness value of each particle in the popu-
lation using the objective function given in equation (1). 
Step 10: If the evaluation value of each particle is better than 
the previous Pbest, then set Pbest equal to the current value. 
Step 11: Select the particle with the best fitness value of all the 
particles in the population as the gbest. 
Step 12: Update the velocity of each particle according to 
equation (24). 
Step 13: Check the velocity of each particle according to the 
following equation: 
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Step 14: The position of each particle is modified according to 
equation (15). 
Step 15: Check the inequality constraints of the modified posi-
tion. 
Step 16: If the stopping criterion is reached (i.e. usually maxi-
mum number of iterations) go to step 17, otherwise go to step 
4. 
Step 17: The particle that generates the latest gbest is the op-
timal generation power of each unit with minimum total fuel 
cost of the thermal power plants. 
Step 18: Print the outputs of hydrothermal scheduling and 
stop. 

8 CASE STUDY AND SIMULATION RESULTS 
To verify the feasibility and effectiveness of the proposed al-
gorithms, a hydrothermal power system consists of a multi 
chain cascade of four hydro units and three thermal units 
were tested. The effect of valve point loading has been taken 
into account in this case study to illustrate the robustness of 
the proposed methods. The transport time delay between cas-
caded reservoirs is also considered in this case study. The 
scheduling time period is one day with 24 intervals of one 
hour each. The data of test system are taken from [17] and [18]. 
The multi chain hydro sub system configuration is shown in 
figure 2. The water time transport delays between connected 
reservoirs are given in table 1. In this case study, the output 
power of hydro power plants is represented as a function of 
the reservoir storage and the water discharge rates. The hydro 
power generation coefficients are given in table 2. The reser-
voir storage limits, discharge rate limits, initial and end reser-
voir storage volume conditions and the generation limits of 
hydro power plants are shown in table 3 while table 4 shows 
the reservoir inflows of multi chain hydro power plants. The 
fuel cost coefficients and the minimum and maximum limits 
of three thermal generating units are given in table 5. The load 
demand over the 2hours is given in table 6. The proposed al-
gorithms has been implemented in MATLAB language and 
executed on an Intel Core i3, 2.27 GHz personal computer 
with a 3.0 GB of RAM. The optimal control parameters used in 
genetic algorithm are listed in table 7. The PSO control param-
eters selected for the solution are given in table 8. The pro-
gram is run 50 times for each algorithm and the best among 
the 50 runs are taken as the final solutions. The resultant op-
timal schedule of thermal and hydro power plants and the 
hourly total fuel cost obtained from the genetic algorithm and 
the particle swarm optimization technique are shown in table 
9 and table 10, respectively. Table 11 and table 12 shows the 
optimal hourly water discharge of hydro power plants ob-
tained from the genetic algorithm and the particle swarm op-
timization techniques.  Table 13 shows the comparison of total 
fuel cost and computation time between the two proposed 

methods. From table 13, it is observed that the constriction 
factor based PSO algorithm give high quality solution with 
less computation time when compared to the genetic algo-
rithm. Figure 5 to figure 8 shows the discharge trajectories of 
hydro power plants by using two proposed approaches, figure 
9 to figure 11 gives the fuel cost of each thermal unit versus 
day hours by using the two proposed techniques and figure 12 
presents the total fuel cost of the system versus 24 hours by 
using the two proposed methods.  

 

 
Fig.3. Multi chain hydro sub system networks 

TABLE 1: WATER TIME TRANSPORT DELAYS BETWEEN CONNECTED RES-
ERVOIRS 

Plant 1 2 3 4 

RRu 0 0 2 1 
uτ 2 3 4 0 

 Ru   : Number of upstream hydro power plants 
: Time delay to immediate downstream hydro power plants uτ 

 

TABLE 2: HYDRO POWER GENERATION COEFFICIENTS 

Plant CR1 CR2 CR3 CR4 CR5 CR6 

1 -0.0042 -0.4200 0.0300 0.9000 10.000 -50.000 
2 -0.0040 -0.3000 0.0150 1.1400 9.5000 -70.000 
3 -0.0016 -0.3000 0.0140 0.5500 5.5000 -40.000 
4 -0.0030 -0.3100 0.0270 1.4400 14.000 -90.000 

 

TABLE 3: RESERVOIR STORAGE CAPACITY LIMITS, PLANT DISCHARGE LIM-
ITS, PLANT GENERATION LIMITS AND RESERVOIR END CONDITIONS  

( 4 3×10 m ) 

Plant VRhRP

min VRhRP

max VRhRP

ini VRhRP

end qRhRP

min qRhRP

max PRhRP

min PRhRP

max 

1 80 150 100 120 5 15 0 500 
2 60 120 80 70 6 15 0 500 
3 100 240 170 170 10 30 0 500 
4 70 160 120 140 13 25 0 500 
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TABLE 4: RESERVOIR INFLOWS OF MULTI CHAIN HYDRO PLANTS 
( 4 3×10 m ) 

Hour 
Reservoir 

Hour 
Reservoir 

1 2 3 4 1 2 3 4 

1 10 8 8.1 2.8 13 11 8 4 0 
2 9 8 8.2 2.4 14 12 9 3 0 
3 8 9 4 1.6 15 11 9 3 0 
4 7 9 2 0 16 10 8 2 0 
5 6 8 3 0 17 9 7 2 0 
6 7 7 4 0 18 8 6 2 0 
7 8 6 3 0 19 7 7 1 0 
8 9 7 2 0 20 6 8 1 0 
9 10 8 1 0 21 7 9 2 0 
10 11 9 1 0 22 8 9 2 0 
11 12 9 1 0 23 9 8 1 0 
12 10 8 2 0 24 10 8 0 0 

 

TABLE 5: FUEL COST COEFFICIENTS AND OPERATING LIMITS OF THERMAL 
UNITS 

Unit 

         

 ai 

 

       

bi 

 

       

ci 

 

       

eRi 

 

        

f Ri 

 

           

PRgi RP

min
 

 

          

PRgi,RP

max 

 
1 0.0012 2.45 100 160 0.038 20 175 

2 0.0010 2.32 120 180 0.037 40 300 

3 0.0015 2.10 150 200 0.035 50 500 

 

 
TABLE 6: LOAD DEMAND FOR 24 HOUR 

Hour 
PRD 

R(MW) 
Hour 

PRDR 

(MW) 
Hour 

PRDR 

(MW) 
Hour 

PRDR 

(MW) 

1 750 7 950 13 1110 19 1070 
2 780 8 1010 14 1030 20 1050 
3 700 9 1090 15 1010 21 910 
4 650 10 1080 16 1060 22 860 
5 670 11 1100 17 1050 23 850 
6 800 12 1150 18 1120 24 800 
 

TABLE 7: CONTROL PARAMETERS OF GENETIC ALGORITHM  

Genetic algorithm parameters Value 

Population size 50 
Maximum number of generations 300 

Crossover probability 0.8 
Mutation probability 0.05 

 
 

TABLE 8: CONTROL PARAMETERS OF PARTICLE SWARM OPTIMIZATION 

Genetic algorithm parameters Value 

Population size 50 
Maximum number of generations 300 
Acceleration coefficients(cR1R/cR2R) 2.05 
Minimum inertia weight (ωRminR) 0.4 
Minimum inertia weight (ωRmaxR) 0.9 

Constriction factor (k) 0.729 
 

TABLE 9: HOURLY OPTIMAL HYDROTHERMAL GENERATION SCHEDULE USING GENETIC ALGORITHM 
 

Hour 
 

Thermal generation (MW) Hydro generation (MW) Total fuel 
cost ($/hr) 

PRg1R  PR2gR  PRg3R  PRh1  PRh2 PRh3R  PRh4R  

1 23.1236 295.3239 50.0000 64.5640 81.4962 24.6730 210.8193 1331.356 

2 102.7101 133.1556 140.0197 90.4459 71.3577 42.8051 199.5059 1340.523 

3 20.0000 125.0555 231.9288 70.2375 53.9426 27.6694 171.1662 1310.812 

4 21.4101 45.0040 229.4431 82.1908 67.5285 47.5866 156.8370 1132.477 

5 105.9331 129.7690 145.1922 54.6509 46.2334 24.2977 163.9238 1387.198 

6 26.0101 293.1966 142.0860 53.1216 55.7626 47.1213 182.7018 1592.036 

7 30.3361 296.2658 234.1831 65.6663 75.4587 50.2856 197.8044 1898.590 

8 105.3821 300.0000 229.9113 74.1777 60.1855 53.8578 186.4857 2043.714 

9 163.2261 286.1469 319.0854 60.4050 43.9982 29.5776 187.5608 2547.151 

10 116.2331 294.1784 317.9356 68.8611 49.2068 43.3024 190.2826 2351.185 

11 102.4704 210.1291 415.0816 79.7521 45.5969 53.2064 193.7635 2340.721 

12 112.0361 126.2291 498.8067 104.4852 58.7410 54.3342 195.3676 2453.624 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 4, Issue 5, May-2013                                                                                  
ISSN 2229-5518 
 

IJSER © 2013 
http://www.ijser.org  

758 

13 22.1319 294.9565 402.5905 95.3191 43.6388 47.9560 203.4072 2343.924 

14 104.2409 207.1327 320.9477 91.9101 56.9260 40.8118 208.0307 2029.419 

15 149.0448 298.0445 141.1267 100.2612 60.8535 51.1703 209.4990 2057.058 

16 130.1147 123.3982 409.0408 87.6299 51.4138 43.7312 214.6714 2268.834 

17 102.9447 295.1445 233.2934 93.7531 44.0839 57.7723 223.0082 2009.123 

18 172.0170 209.7859 315.2614 89.2480 51.2182 54.4402 228.0293 2274.654 

19 103.0447 295.2660 276.1546 65.2651 43.1068 60.3307 226.8321 2307.208 

20 22.2443 295.1658 319.2717 68.2697 49.0082 57.8633 238.1771 2036.999 

21 57.4388 209.1484 227.4860 69.2510 46.2793 50.7053 249.6913 1775.913 

22 21.0737 213.1772 236.1372 62.6533 50.6642 41.7298 234.5646 1616.474 

23 20.0000 294.7055 139.2702 58.7600 43.6722 53.3260 240.2661 1515.158 

24 20.0000 140.1303 230.1860 69.8166 44.9844 55.9327 238.9501 1427.858 

                                                        

TABLE 10: HOURLY OPTIMAL HYDROTHERMAL GENERATION SCHEDULE USING CONSTRICTION FACTOR BASED PARTICLE SWARM OPTIMIZATION 
 

Hour 
 

Thermal generation (MW) Hydro generation (MW) Total fuel 
cost ($/hr) 

PRg1R  PR2gR  PRg3R  PRh1  PRh2 PRh3R  PRh4R  

1 102.3522 209.8194 57.6422 60.1722 80.3207 38.6494 201.0440 1345.009 

2 20.0000 126.8176 230.7566 73.0700 79.3509 55.3298 194.6751 1315.606 

3 105.4454 130.2316 139.7551 54.0153 55.8002 42.4402 172.3121 1335.646 

4 25.1898 128.3247 141.6169 86.1289 65.3077 48.1490 155.2830 1141.171 

5 123.6643 116.0352 140.8527 54.2512 43.3706 23.7179 168.1081 1479.744 

6 20.2832 300.0000 144.4642 54.0606 73.2636 41.5883 166.3402 1610.288 

7 32.7205 300.0000 230.9010 88.9708 71.1724 55.5877 170.6477 1921.262 

8 101.6320 296.3523 234.4262 77.8782 70.3955 54.2548 175.0610 2032.832 

9 104.6402 295.1020 365.9320 56.0490 37.4051 44.0579 186.8139 2594.627 

10 110.1216 300.0000 319.4361 64.1774 44.9308 40.0597 201.2744 2344.922 

11 102.9433 299.8210 324.6830 96.2948 46.6031 38.5205 191.1343 2333.356 

12 29.9546 300.0000 410.6102 102.7084 56.2583 57.3524 193.1162 2450.648 

13 20.0000 294.0590 408.0650 87.5439 45.7874 54.3512 200.1934 2306.124 

14 20.1798 294.8191 319.1150 81.9074 51.3624 52.8587 209.7574 2016.600 

15 65.0533 297.0703 229.3150 94.6490 50.6550 49.3154 223.9421 2047.800 

16 116.1536 139.0801 406.3149 84.1369 53.9792 42.2257 218.1095 2301.257 

17 103.0538 209.8115 317.8150 99.4313 47.9614 52.1143 219.8126 1997.518 

18 35.3345 298.2462 320.2436 102.2590 69.0529 60.3747 234.4891 2183.483 

19 102.0183 211.1061 321.2727 84.0163 40.2404 52.7194 258.6312 2022.778 

20 100.0383 212.6210 313.3650 58.2941 42.5457 50.6354 272.5005 2046.704 

21 29.9704 295.1772 140.3611 79.0149 64.9985 37.0795 263.3983 1607.165 

22 109.9750 134.5710 232.0451 57.9149 42.6570 42.0930 240.7441 1676.804 

23 103.0293 125.5876 230.0580 65.3415 42.4109 45.5238 238.0490 1515.265 

24 22.6076 209.6222 140.0572 67.0476 49.5320 42.4138 268.7197 1299.011 
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TABLE 11: HOURLY HYDRO PLANT DISCHARGE USING GA 

Hour ) 4 3×10 m /hr(Hydro plant discharges  
qRh1 qRh2 qRh3 qRh4 

1 6.3621 13.5605 22.9822 14.4752 
2 10.8961 11.1072 18.4672 15.0222 
3 7.1611 7.4198 20.5141 13.2766 
4 9.2025 10.1168 15.4519 13.8298 
5 5.2188 6.1660 21.8955 13.0000 
6 5.0000 7.7210 16.4755 14.8439 
7 6.4752 14.4394 15.9646 16.2453 
8 7.6061 10.2842 12.7943 14.4014 
9 5.7007 7.0449 21.0536 13.1672 
10 6.6596 7.7579 18.1771 13.0000 
11 8.0732 6.9097 14.3529 13.0000 
12 14.6622 9.4728 13.3191 13.2459 
13 11.1318 6.6146 17.4210 13.1229 
14 10.2663 8.8766 19.3652 13.0000 
15 12.5358 9.8090 17.1765 13.0000 
16 9.4818 7.9669 19.4765 13.6146 
17 10.8308 6.7253 14.2780 14.1678 
18 9.9715 8.1882 17.3398 14.0903 
19 6.2662 6.7990 13.7548 13.5286 
20 6.6596 7.7364 16.4566 14.1924 
21 6.7825 7.0449 19.2107 15.7536 
22 5.9220 7.5981 21.0261 13.5409 
23 5.4303 6.3073 17.7181 14.2170 
24 6.7038 6.3335 16.3337 13.7808 

 
TABLE 12: HOURLY HYDRO PLANT DISCHARGE USING CFPSO METHOD 

Hour ) 4 3×10 m /hr(Hydro plant discharges  
qRh1 qRh2 qRh3 qRh4 

1 5.7990 12.9505 20.5398 13.1229 
2 7.4559 14.9805 12.8725 13.9983 
3 5.0000 8.2127 17.9687 13.0000 
4 9.6117 10.3248 16.4797 13.0000 
5 5.0528 6.1585 22.5614 13.4225 
6 5.0000 14.3987 18.7684 13.2641 
7 10.1422 14.1917 11.5845 13.0000 
8 8.1422 13.8035 15.0767 13.0000 
9 5.1849 6.0528 19.1534 13.0000 
10 6.0564 6.9771 20.4840 14.0564 
11 11.1414 7.0141 20.9517 13.0528 
12 13.5567 8.7984 13.7150 13.0000 
13 9.4322 6.8451 16.3067 13.0000 
14 8.3885 7.5845 17.3808 13.1585 
15 10.6153 7.2676 19.0765 13.8979 
16 8.6736 7.7958 20.6765 13.1849 
17 11.8519 6.7976 18.0101 13.0000 
18 13.4021 12.1095 13.0102 14.2676 
19 8.9637 6.1907 18.3101 17.0670 
20 5.4306 6.3603 19.0075 18.9034 
21 8.1710 10.8396 22.3957 17.3716 
22 5.3689 6.2854 21.1805 14.6610 
23 6.1983 6.0528 19.9457 13.8475 
24 6.3625 7.0287 20.5701 17.4578 

 
TABLE 13: COMPARISON OF TOTAL FUEL COST AND COMPUTATION TIME 

BETWEEN GA AND CFPSO TECHNIQUES 
Method Total fuel cost ($) CPU Time (Sec) 

CFPSO 44925.62 183.64 

GA 45392.009 198.57 
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Fig.5. Discharge trajectories of hydro plant 1 using GA and CFPSO 
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Fig.6. Discharge trajectories of hydro plant 2 using GA and CFPSO 
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Fig.7. Discharge trajectories of hydro plant 3 using GA and CFPSO 
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9 CONCLUSIONS 
In this paper, the constriction factor based particle swarm op-
timization (CFPSO) technique and genetic algorithm (GA) are 
proposed for solving short term multi chain hydrothermal 
scheduling problem. To demonstrate the performance efficien-
cy of the proposed algorithms, they has been applied on test 
system consists of a multi chain cascade of four hydro units 
and three thermal units. The effect of valve point loading is 
considered in this paper to demonstrate the robustness of the 
proposed techniques. The results obtained from the CFPSO 
technique are compared with the simulation results obtained 
from the GA to verify the feasibility of the proposed methods. 
The numerical results show that the CFPSO approach give a 
cheaper total generated cost than genetic algorithm. From the 
tabulated results, it is clear that the computational time of the 
CFPSO technique is less than the genetic algorithm. . Thus, the 
proposed CFPSO approach can converge to the minimum fuel 
cost faster than the GA method. 
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Fig.8. Discharge trajectories of hydro plant 4 using GA and CFPSO 
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Fig.9. Fuel cost of thermal unit 1 using GA and CFPSO 
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Fig.10. Fuel cost of thermal unit 2 using GA and CFPSO 
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Fig.11. Fuel cost of thermal unit 3 using GA and CFPSO 
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Fig.12. Total fuel cost of thermal units using GA and CFPSO 
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